

Practical Neural Network Design Using Reinforcement Learning

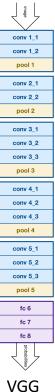
Bowen Baker Media Lab bowen@mit.edu

Co-authors

Otkrist Gupta MIT Media Lab Nikhil Naik Harvard

Ramesh Raskar MIT Media Lab

Popular Deep Neural Networks

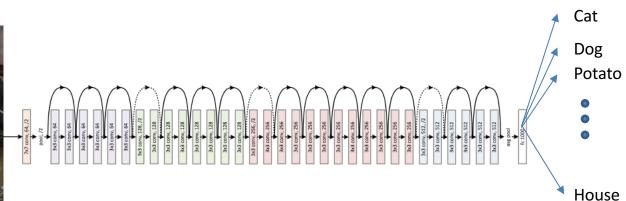


Inception

Resnet

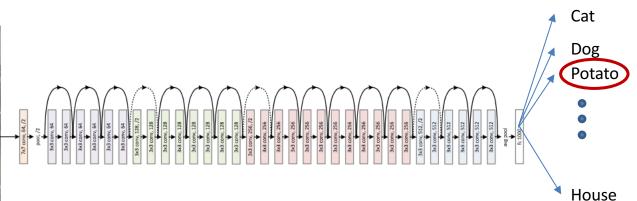
Really good at recognizing cats!

Taro



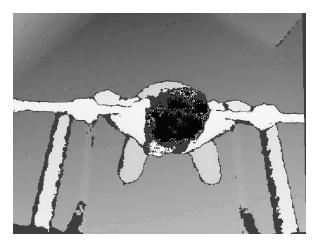
Really good at recognizing cats!

Taro



They may not be the best in other domains!

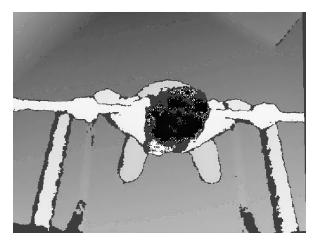
- Example:
 - Perch An MIT workout tracking startup



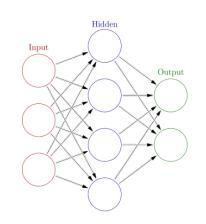
Depth Image

They may not be the best in other domains!

- Example:
 - Perch An MIT workout tracking startup

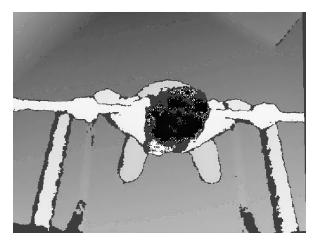


Depth Image

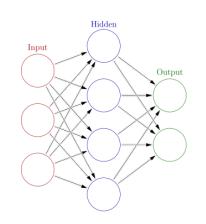


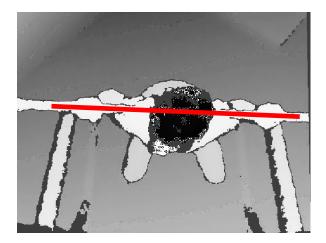
They may not be the best in other domains!

- Example:
 - Perch An MIT workout tracking startup



Depth Image





So What's The Problem?

So What's The Problem?

- Perch is trying to make *cheap* product using minimal hardware
 - And I mean minimal

So What's The Problem?

- Perch is trying to make *cheap* product using minimal hardware
 - And I mean **minimal**
- They need to use a \$100 GPU to run this network at 30 fps

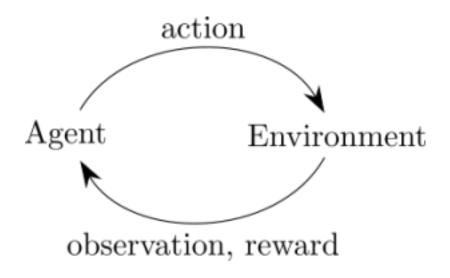
 Idea #1: Use standard hyperparameter optimization packages such as Bayesian optimization with Gaussian Process priors

- Idea #1: Use standard hyperparameter optimization packages such as Bayesian optimization with Gaussian Process priors
 - Convolutional Neural Nets can have a variable number of layers

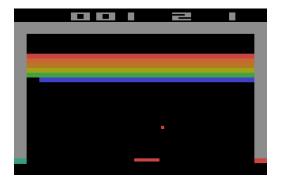
- Idea #1: Use standard hyperparameter optimization packages such as Bayesian optimization with Gaussian Process priors
 - Convolutional Neural Nets can have a variable number of layers
 - Convolutional Neural Nets can have hundreds even thousands of layers

- Idea #1: Use standard hyperparameter optimization packages such as Bayesian optimization with Gaussian Process priors
 - Convolutional Neural Nets can have a variable number of layers
 - Convolutional Neural Nets can have hundreds even thousands of layers
- Idea #2: Use reinforcement learning!

Automating Tasks With Reinforcement Learning

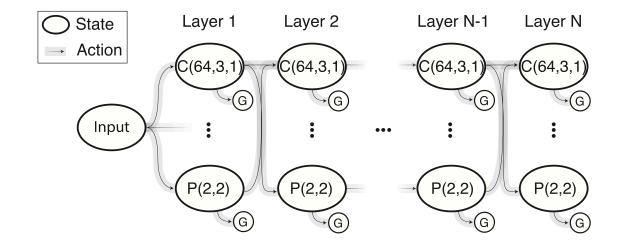


Automating Tasks With Reinforcement Learning

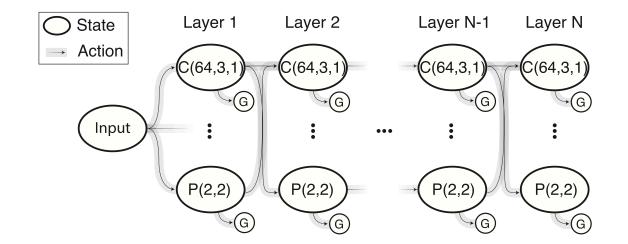


Outline

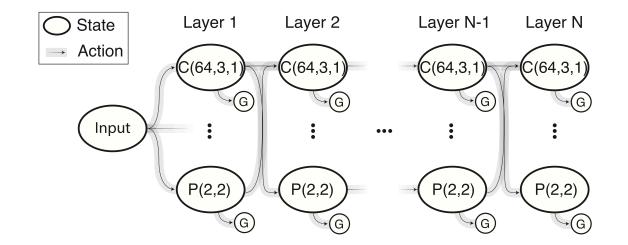
- 1. Modeling Architecture Selection as a Markov Decision Process
- 2. Reinforcement Learning Background
- 3. Results with Q-Learning
- 4. Accelerating Architecture Selection with Simple Early Stopping Algorithms



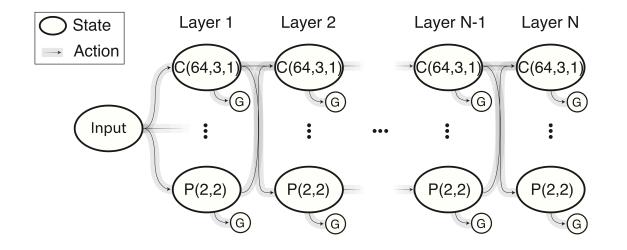
• C(64,3,1) – Convolutional Layer with 64 learnable kernels, 3x3 kernel size, and stride of 1

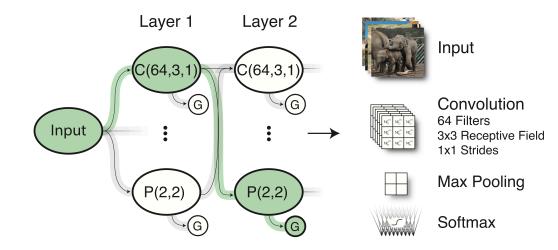


- C(64,3,1) Convolutional Layer with 64 learnable kernels, 3x3 kernel size, and stride of 1
- P(2,2) Max Pooling Layer with 2x2 kernel size and stride 2



- C(64,3,1) Convolutional Layer with 64 learnable kernels, 3x3 kernel size, and stride of 1
- P(2,2) Max Pooling Layer with 2x2 kernel size and stride 2
- G Termination State (e.g. Softmax)





Q-Learning

$$Q^*(s, u)$$
 -- Denotes the expected reward when
following an optimal policy after
taking action u at state s

Q-Learning

$$Q^*(s_i, u) = \mathbb{E}\left[r + \gamma \max_{u' \in \mathcal{U}(s_j)} Q^*(s_j, u')\right]$$

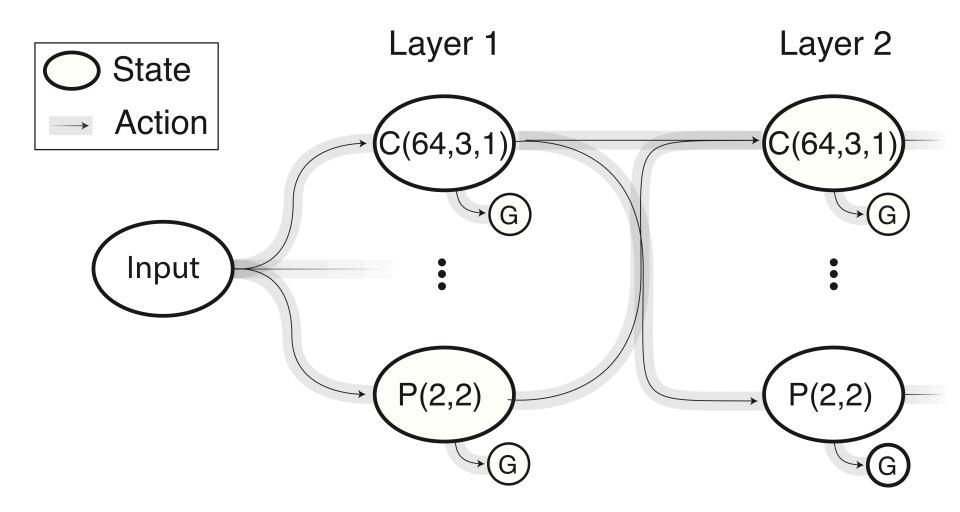
γ -- Discount Factor

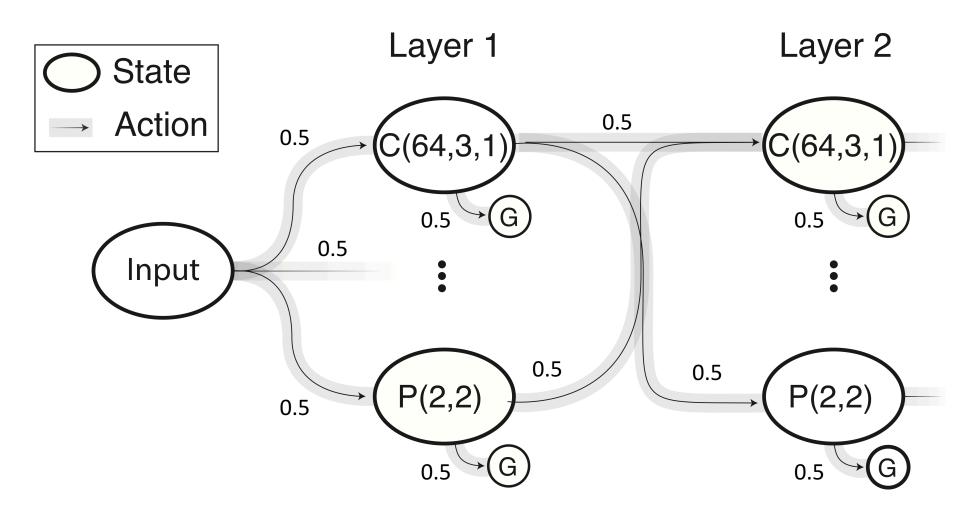
r -- Reward received from the (s_i, u, s_j) transition

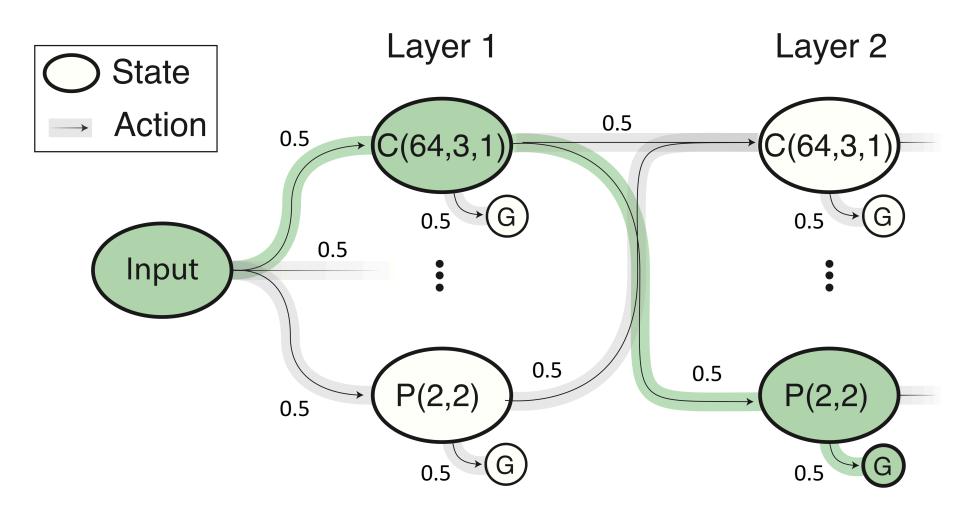
Q-Learning

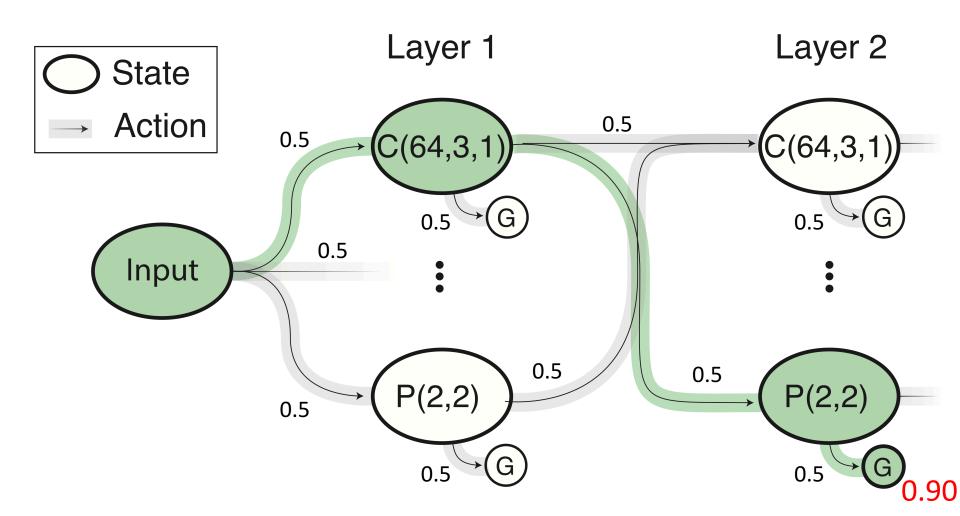
$$Q^*(s_i, u) = \mathbb{E}\left[r + \gamma \max_{u' \in \mathcal{U}(s_j)} Q^*(s_j, u')\right]$$

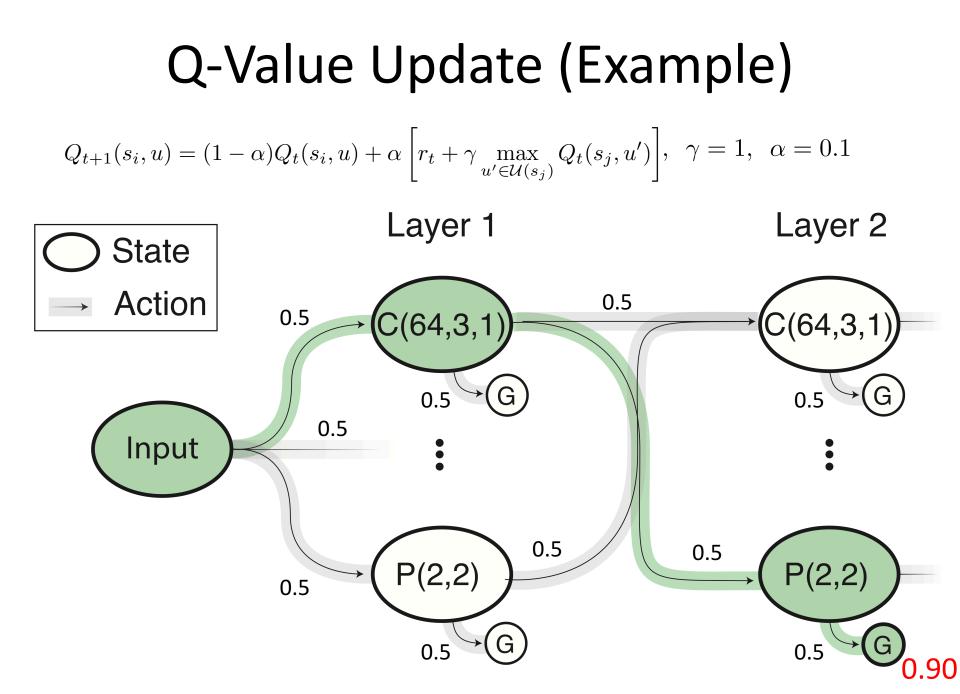
$$Q_{t+1}(s_i, u) = (1 - \alpha)Q_t(s_i, u) + \alpha \left[r_t + \gamma \max_{u' \in \mathcal{U}(s_j)} Q_t(s_j, u') \right]$$

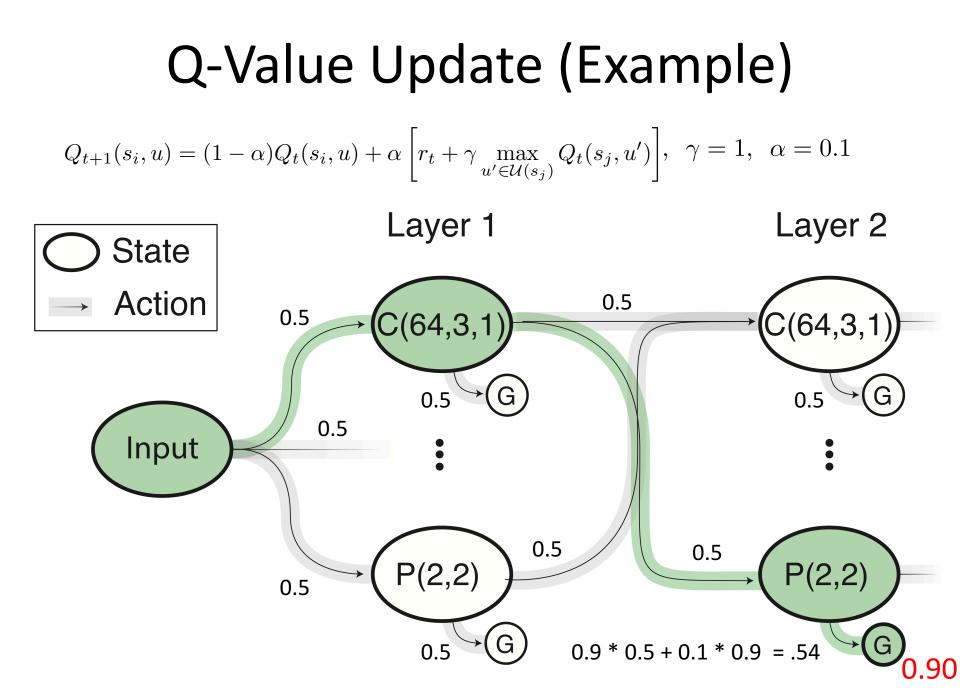


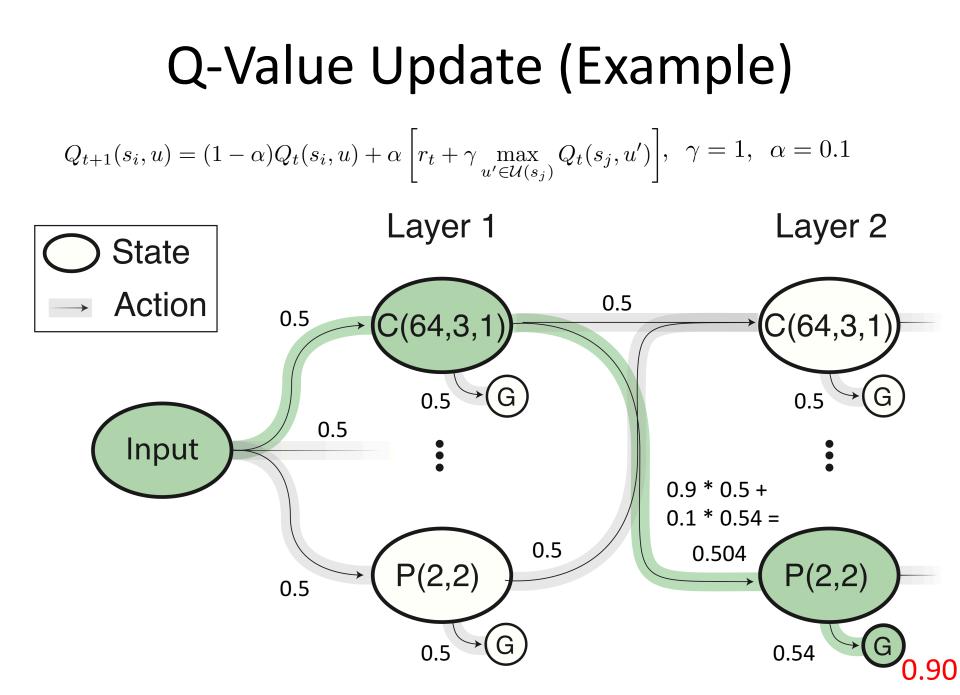


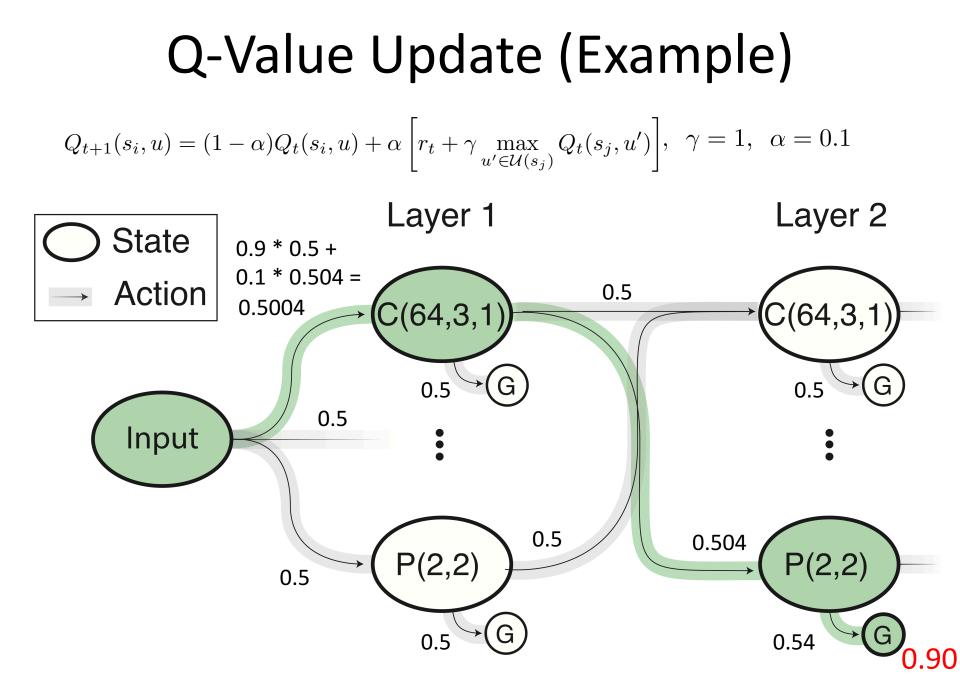




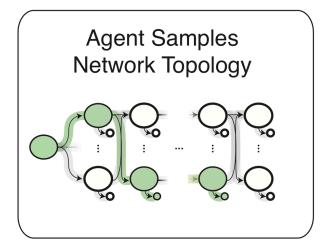








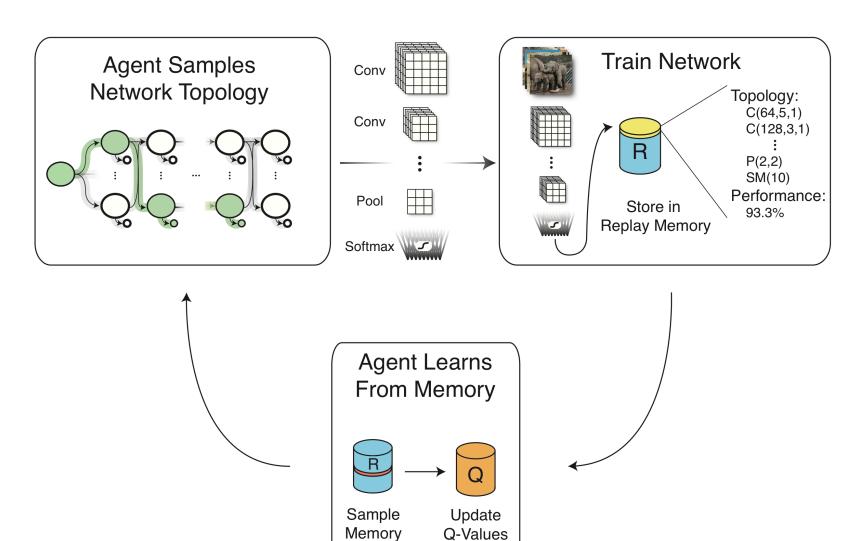
MetaQNN



MetaQNN



MetaQNN



Sampling Networks

Epsilon-Greedy Exploration:

- State *s* corresponds the last layer chosen
- Action *u* corresponds to the next layer chosen

$$u = \begin{cases} \text{Uniform}[\mathcal{U}(s)] & \text{with probability } \epsilon \\ \arg\max_{u' \in \mathcal{U}(s)}[Q(s, u')] & \text{with probability } 1 - \epsilon \end{cases}$$

State Space

Layer Type	Layer Parameters	Parameter Values
	$i \sim$ Layer depth	< 12
	$f \sim$ Receptive field size	Square. $\in \{1, 3, 5\}$
Convolution (C)	$\ell \sim \text{Stride}$	Square. Always equal to 1
	$d\sim$ # receptive fields	$\in \{64, 128, 256, 512\}$
	$n \sim \text{Representation size}$	$\in \{(\infty, 8], (8, 4], (4, 1]\}$
	$i \sim$ Layer depth	< 12
Pooling (P)	$(f, \ell) \sim$ (Receptive field size, Strides)	Square. $\in \{(5,3), (3,2), (2,2)\}$
	$n \sim \text{Representation size}$	Square. $\in \{(5,3), (3,2), (2,2)\} \in \{(\infty,8], (8,4] \text{ and } (4,1]\}$
	$i \sim$ Layer depth	< 12
Fully Connected (FC)	$n \sim$ # consecutive FC layers	< 3
	$d\sim$ # neurons	$\in \{512, 256, 128\}$
Termination State	$s \sim$ Previous State	
	$t \sim Type$	Global Avg. Pooling/Softmax

Experiments

MNIST

- Hand Written Digits
- 60,000 Training Examples
- 10,000 Testing Examples
- 10 classes

CIFAR-10

- Tiny Images
- 50,000 Training Examples
- 10,000 Testing Examples
- 10 classes

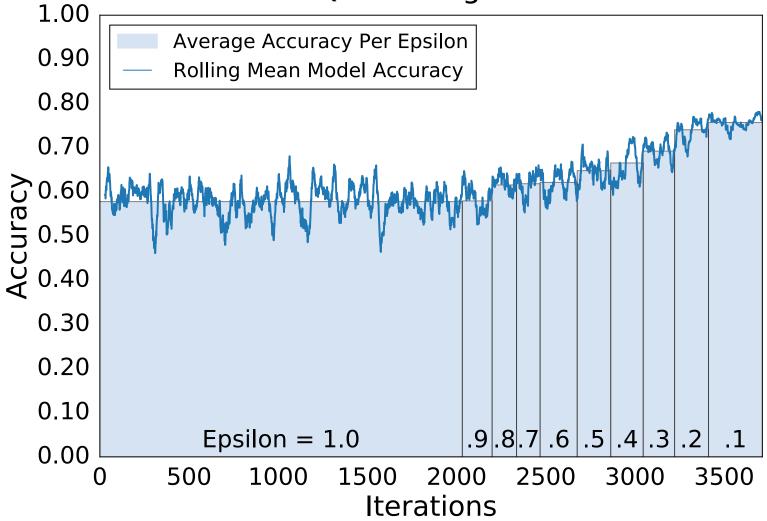
SVHN

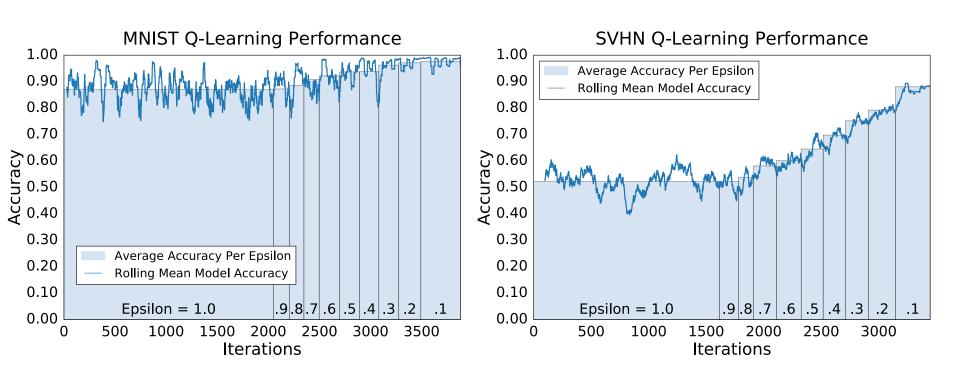
- Street View House Digits
- 73257 Training Examples
- 26032 Testing Examples
- 531131 'Extra' Examples
- 10 classes

Hardware

- ~10 GPU's
 - Mostly 2015 Titan Xs
 - Some GTX 1080s
- Each experiment took ~10 days
 Roughly 100 GPUdays

CIFAR10 Q-Learning Performance





Comparison Against Models with similar design modules:

Method	CIFAR-10	SVHN	MNIST	CIFAR-100
Maxout (Goodfellow et al., 2013)	9.38	2.47	0.45	38.57
NIN (Lin et al., 2013)	8.81	2.35	0.47	35.68
FitNet (Romero et al., 2014)	8.39	2.42	0.51	35.04
HighWay (Srivastava et al., 2015)	7.72	-	-	-
VGGnet (Simonyan & Zisserman, 2014)	7.25	-	-	-
All-CNN (Springenberg et al., 2014)	7.25	-	-	33.71
MetaQNN (ensemble)	7.32	2.06	0.32	-
MetaQNN (top model)	6.92	2.28	0.44	27.14*

Comparison Against Models with similar design modules:

Method	CIFAR-10	SVHN	MNIST	CIFAR-100
Maxout (Goodfellow et al., 2013)	9.38	2.47	0.45	38.57
NIN (Lin et al., 2013)	8.81	2.35	0.47	35.68
FitNet (Romero et al., 2014)	8.39	2.42	0.51	35.04
HighWay (Srivastava et al., 2015)	7.72	-	-	-
VGGnet (Simonyan & Zisserman, 2014)	7.25	-	-	-
All-CNN (Springenberg et al., 2014)	7.25	-	-	33.71
MetaQNN (ensemble)	7.32	2.06	0.32	-
MetaQNN (top model)	6.92	2.28	0.44	27.14*

Comparison Against more complex modules:

Method	CIFAR-10	SVHN	MNIST	CIFAR-100
DropConnect (Wan et al., 2013)	9.32	1.94	0.57	-
DSN (Lee et al., 2015)	8.22	1.92	0.39	34.57
R-CNN (Liang & Hu, 2015)	7.72	1.77	0.31	31.75
MetaQNN (ensemble)	7.32	2.06	0.32	-
MetaQNN (top model)	6.92	2.28	0.44	27.14*
Resnet(110) (He et al., 2015)	6.61	-	-	-
Resnet(1001) (He et al., 2016)	4.62	-	-	22.71
ELU (Clevert et al., 2015)	6.55	-	-	24.28
Tree+Max-Avg (Lee et al., 2016)	6.05	1.69	0.31	32.37

Meta-Modeling Comparison on CIFAR-10

Method	Test Error on CIFAR-10	# Samples	Estimated Computation (GPU-Days)
MetaQNN (Ours)	6.92	2,700	100
Neural Architecture Search (Zoph et al., 2016)	3.65	12,800	10,000
Large Scale Evolution (Real et al., 2017)	5.4	-	2,600
Bayesian Optimization (Snoek et al., 2012)	9.5	50	-

Updated Results: Different Model Depths Don't Train Equally

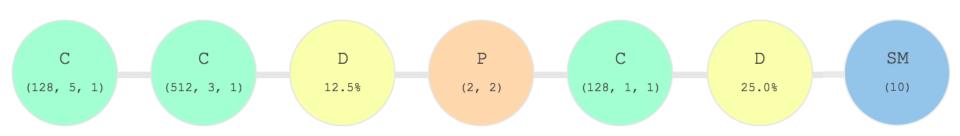
Model Depth	20 Epoch Accuracy	300 Epoch Accuracy
9	84.78	93.08
15	81.2	94.7

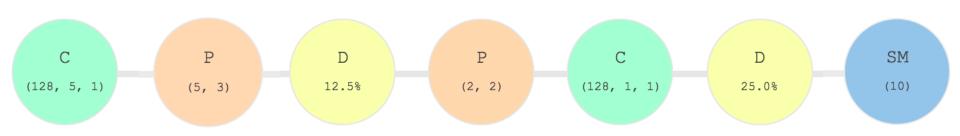
Updated Results: Different Model Depths Don't Train Equally

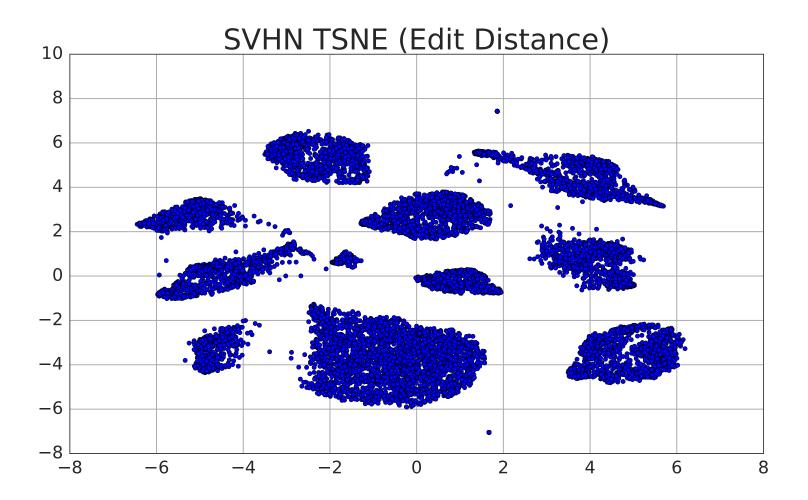
			Method	CIFAR-10	Τ
Model Depth	20 Epoch Accuracy	300 Epoch Accuracy	DropConnect (Wan et al., 2013) DSN (Lee et al., 2015) R-CNN (Liang & Hu, 2015) MateONN (cancemble)	9.32 8.22 7.72 7.32	
9	84.78	93.08	MetaQNN (ensemble) MetaQNN (top model)	6.92	5.3
15	81.2	94.7	Resnet(110) (He et al., 2015) Resnet(1001) (He et al., 2016)	6.61 4.62	
			ELU (Clevert et al., 2015) Tree+Max-Avg (Lee et al., 2016)	6.55 6.05	

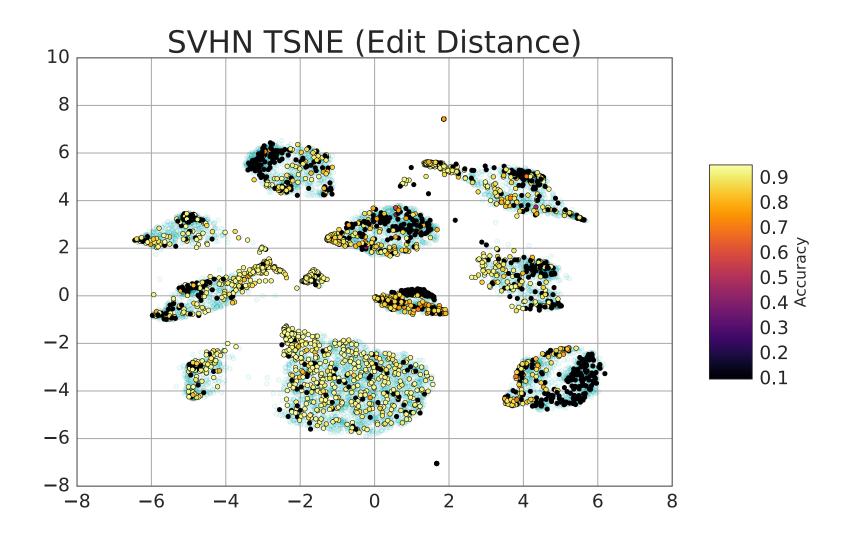
Updated Results: Different Model Depths Don't Train Equally

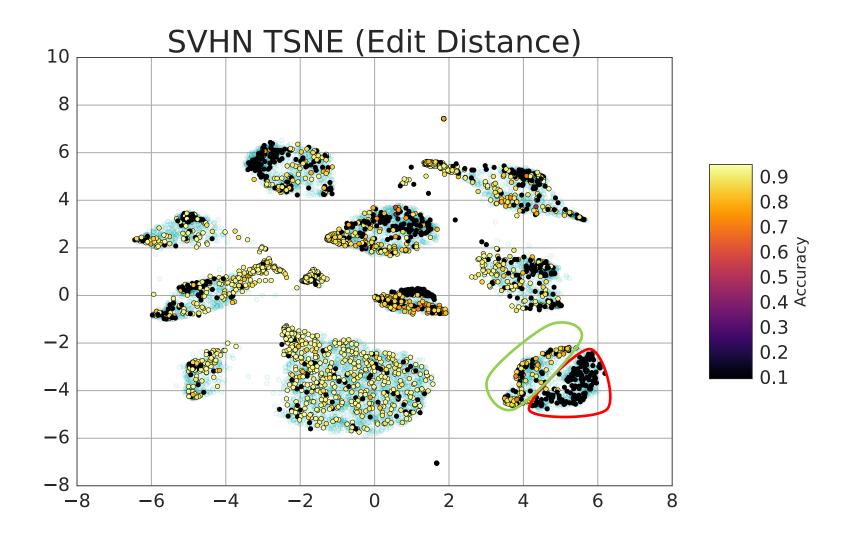
Method	Test Error on CIFAR-10	# Samples	Estimated Computation (GPU-Days)
MetaQNN (Ours)	5.3	2,700	100
Neural Architecture Search (Zoph et al., 2016)	3.65	12,800	10,000
Large Scale Evolution (Real et al., 2017)	5.4	-	2,600
Bayesian Optimization (Snoek et al., 2012)	9.5	50	-

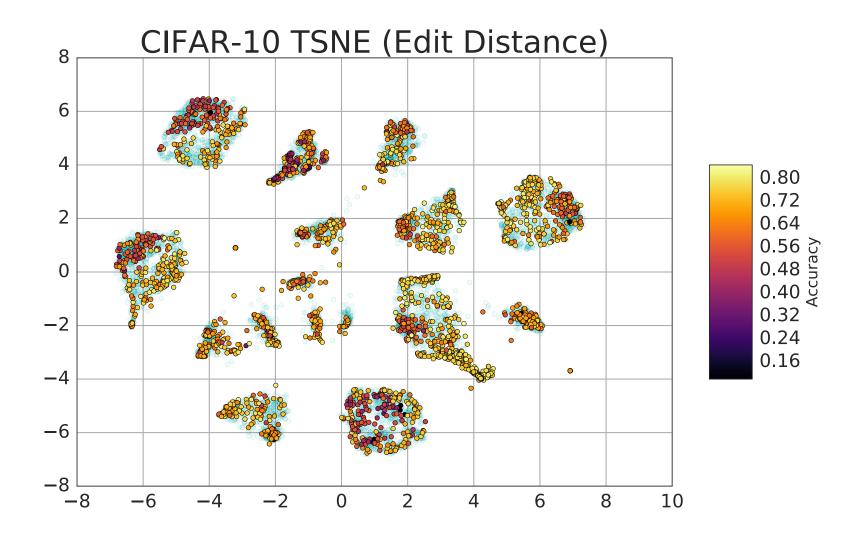












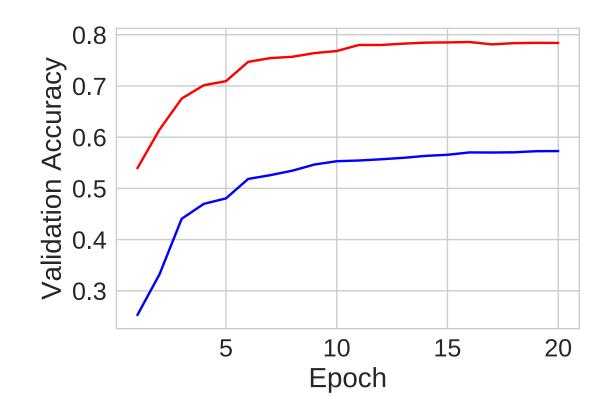
Outline

- 1. Reinforcement Learning Background
- 2. Modeling Architecture Selection as a Markov Decision Process
- 3. Results with Q-Learning
- 4. Accelerating Architecture Selection with Simple Early Stopping Algorithms

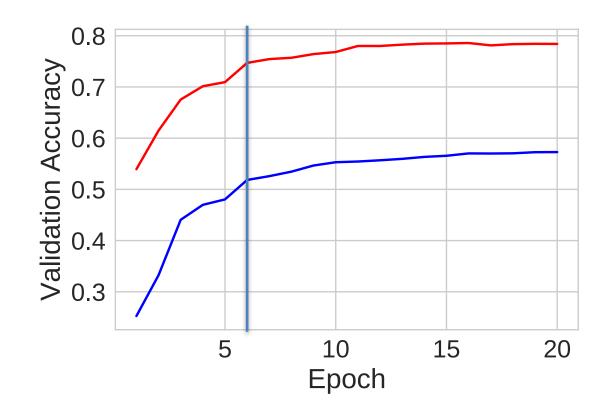
Meta-Modeling Comparison on CIFAR-10

Method	Test Error on CIFAR-10	# Samples	Estimated Computation (GPU-Days)
MetaQNN (Ours)	6.92	2,700	100
Neural Architecture Search (Zoph et al., 2016)	3.65	12,800	10,000
Large Scale Evolution (Real et al., 2017)	5.4	-	2,600
Bayesian Optimization (Snoek et al., 2012)	9.5	50	-

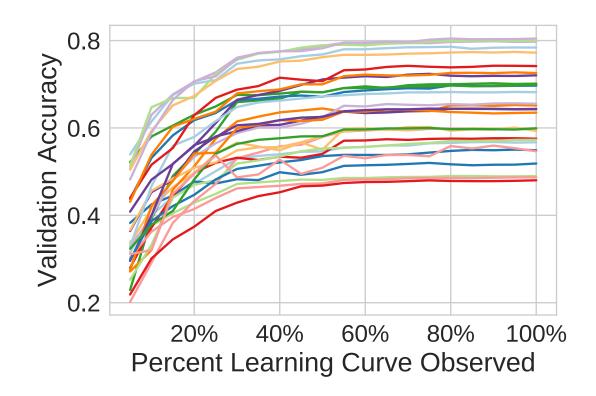
 Humans are pretty good at recognizing suboptimal training configurations



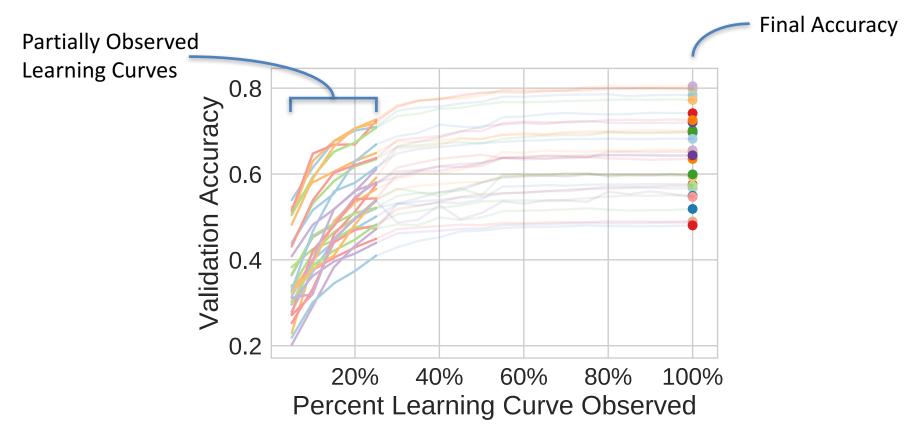
 Humans are pretty good at recognizing suboptimal training configurations



• Use a simple model to predict final accuracy given a partially observed learning curve

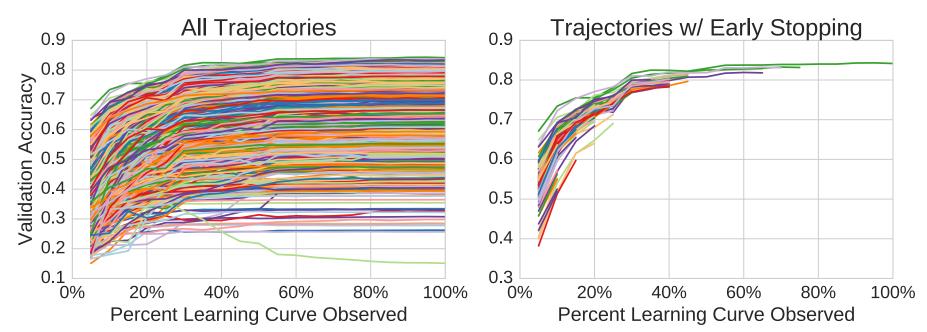


 Use a simple model to predict final accuracy given a partially observed learning curve



- Use a simple model to predict final accuracy given a partially observed learning curve
- Use performance prediction to terminate suboptimal configurations

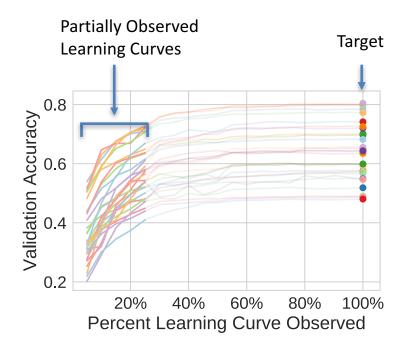
- Use a simple model to predict final accuracy given a partially observed learning curve
- Use performance prediction to terminate suboptimal configurations



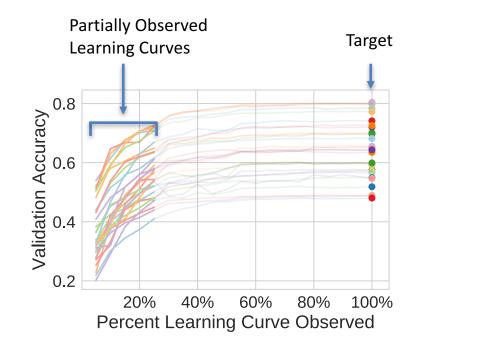
Performance Prediction Model

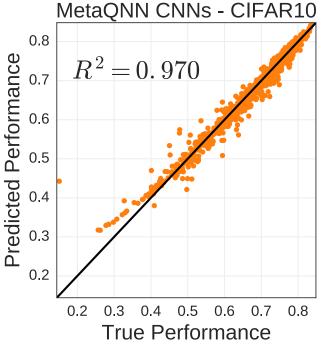
- Features:
 - $y_{1...t}$ Partially observed learning curves
 - \mathcal{X}_f Model features, e.g. # layers, # weights, etc.
- Target
 - y_T Final Accuracy
- Works for both hyperparameter optimization and meta-modeling

Meta-Modeling Example (CIFAR-10)



Meta-Modeling Example (CIFAR-10)





- 100 training examples
- 25% learning curve observed

1. Given performance prediction model

 $\hat{y}_T(t) = f(y_{1\dots t}, x_f)$

1. Given performance prediction model

 $\hat{y}_T(t) = f(y_{1\dots t}, x_f)$

2. Assume errors are zero-mean Gaussian conditioned on t

 $\hat{y}_T(t) - y_T \sim N(0, \sigma_t)$

1. Given performance prediction model

 $\hat{y}_T(t) = f(y_{1\dots t}, x_f)$

2. Assume errors are zero-mean Gaussian conditioned on t

 $\hat{y}_T(t) - y_T \sim N(0, \sigma_t)$

3. Estimate σ_t empirically from training set using LOOCV

1. Given performance prediction model

 $\hat{y}_T(t) = f(y_{1\dots t}, x_f)$

- 2. Assume errors are zero-mean Gaussian conditioned on t $\hat{y}_T(t) - y_T \sim N(0, \sigma_t)$
- 3. Estimate σ_t empirically from training set using LOOCV 4. Define probability of improvement,

 $p(\hat{y}_T(t) < y_{BEST}) = 1 - \phi(y_{BEST}; \hat{y}_T(t), \sigma_t)$ where $\phi(\cdot; \mu, \sigma_t)$ is the CDF of $N(\mu, \sigma_t)$

1. Given performance prediction model

 $\hat{y}_T(t) = f(y_{1\dots t}, x_f)$

2. Assume errors are zero-mean Gaussian conditioned on t $\hat{y}_T(t) - y_T \sim N(0, \sigma_t)$

3. Estimate σ_t empirically from training set using LOOCV

4. Define probability of improvement,

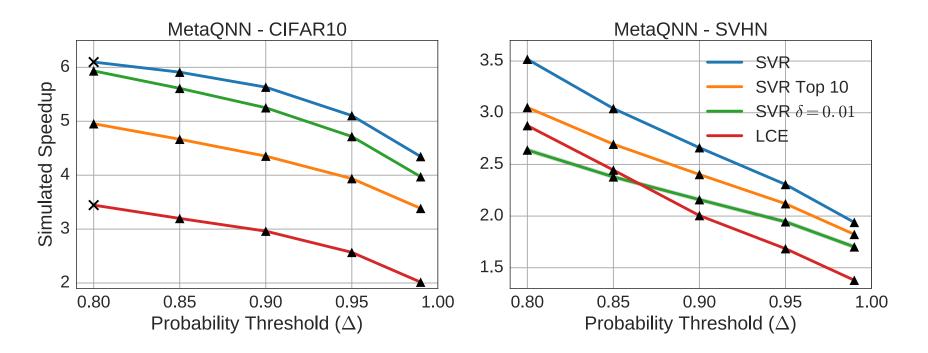
 $p(\hat{y}_T(t) < y_{BEST}) = 1 - \phi(y_{BEST}; \hat{y}_T(t), \sigma_t)$

where $\phi(\cdot; \mu, \sigma_t)$ is the CDF of $N(\mu, \sigma_t)$

5. Define acceptance probability threshold Δ such that training is terminated at time-step t if

$$p(\hat{y}_T(t) < y_{BEST}) > \Delta$$

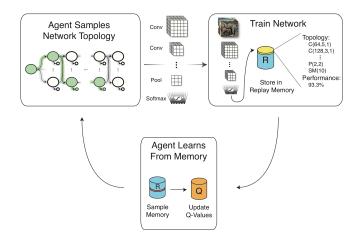
Early Stopping Results



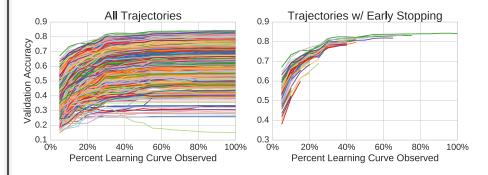
- X ~ On average does not recover best model
 - ~ On average recovers best model
- δ ~ Termination rule $p(\hat{y}_T(t) < y_{BEST} \delta) > \Delta$
- Top 10 ~ Termination rule $p(\hat{y}_T(t) < y_{10^{th} BEST}) > \Delta$

Summary

Designing neural network architectures using reinforcement learning [1]



Practical Neural Network Performance Prediction for Early Stopping [2]



Contact: bowen@mit.edu Slides: bowenbaker.github.io MetaQNN Code: github.com/bowenbaker/metaqnn

- 1. Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. "Designing neural network architectures using reinforcement learning." International Conference on Learning Representations, 2017.
- 2. Bowen Baker*, Otkrist Gupta*, Ramesh Raskar, and Nikhil Naik. "Practical Neural Network Performance Prediction for Early Stopping." *Under Submission*, 2017.